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Congenital long-QT syndrome (LQTS) is a heart rhythm 
disorder that affects ≈1 in 2500 births.1 It predisposes 

children and young adults to a type of ventricular tachycar-
dia (torsades de pointes) and sudden cardiac death.2 LQTS is 
associated with pathogenic variants in several genes that lead 
to dysfunctional cardiac ion channels. Among the 16 known 
LQTS-associated genes, KCNQ1 variants account for ≈30% 
to ≈35% of all LQTS cases. KCNQ1 encodes the α-subunit of 
the voltage-gated K+ channel KCNQ1 (also known as K

V
7.1) 

that regulates the slow delayed rectifier current (I
Ks

), a major 
driver of cardiac repolarization.3 Loss of KCNQ1 function 
leads to diminished or dysfunctional I

Ks
, impaired myocardial 

repolarization, and LQTS.4

See Editorial by Giudicessi 
See Clinical Perspective

An emerging standard-of-care for LQTS uses clinical genetic 
testing to identify LQTS-associated variants.4 Established geno-
type–phenotype relations should be factored into the assessment 

of the risk of sudden cardiac death and the selection of appro-
priate therapeutic interventions.5 However, variants of unknown 
significance for which there is inadequate evidence to classify 
as being pathogenic are common findings.6 This issue is further 
confounded by the presence of background genetic noise (the 
frequency of genetic variations of a particular gene in a healthy 
population) and variants with incomplete penetrance.5–7 Variant 
interpretation is bound to present an increasingly daunting chal-
lenge in the era of next-generation sequencing.7–9

Ideally, except for certain well-established disease-caus-
ing variants, positive LQTS genetic testing results should be 
evaluated by physiologically relevant experimental functional 
assays, but experimental characterization remains labor-inten-
sive and costly to scale.9,10 Under such constraints, computa-
tional methods, which are usually machine learning based, 
represent a common predictive approach.8,11,12 However, 
hardly any computational methods are sufficiently accurate 
for clinical use related to channelopathies or other genetic 
disorders.13,14 Most existing computational methods have been 
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trained on data sets pulled from online databases that have 
not been subjected to rigorous functional validation.12 These 
data sets may be significantly contaminated with erroneous 
annotations and thereby provide machine-learning algorithms 
with misleading information.12,15 Furthermore, a potentially 
even more crucial issue is that current methods intermingle 2 
related but separate questions: whether a given variant causes 
functional impact at the molecular level and, if so, whether 
that functional effect will be manifested at the organismal 
level. Making such distinctions is important when delivering 
predictions because dysfunction at molecular level does not 
necessarily equate to organismal deleteriousness.7,8

In this study, we sought to develop a protein-specific 
algorithm capable of accurately predicting functional conse-
quences of KCNQ1 variants. We first curated a set of func-
tionally validated KCNQ1 variants. We then trained a neural 
network-based, KCNQ1-specific genotype−channel function 
relationship predictor Q1VarPred. In contrast to genome-wide 
methods, whose performances have experienced data set con-
tamination and heterogeneity and do not differentiate between 
functional impact and organismal deleteriousness when deliv-
ering predictions, Q1VarPred was trained on the functionally 
validated data set to predict molecular functional impact.

Materials and Methods
Data Set and Criteria for Annotating Functional 
Impact
KCNQ1 variants and their associated electrophysiological effects in 
the data set for this study were collected from the literature (Table I 
in the Data Supplement). We only considered data from experiments 
where the auxiliary subunit KCNE1 was also expressed. Each variant 
was annotated in terms of functional impact based on 2 experimental 
parameters (peak current relative to the wild type and change in volt-
age of half-maximal activation V½). Specifically, a variant was de-
fined as normal if (1) 75 125% %≤ ≤peak current , and (2) there was 
≤10 mV depolarization or hyperpolarization shift in V½. Mild loss of 
function was defined as (1) 25 75% %< <peak current  or (2) 10 to 20 
mV depolarization shift in V½. Severe loss of function was defined 
as (1) peak current < 25% or (2) >20 mV depolarization shift in V½. 
Severe gain of function was defined as (1) >150% peak current or (2) 
120% to 150% peak current and >15 mV hyperpolarization shift in 
V½. Clinical classification (case variant versus control) of each vari-
ant was sourced from previous large-scale clinical studies16,17 or elec-
trophysiological studies that reported such information. Case variants 
were identified in patient cohort, whereas control variants were found 
in healthy cohort. In addition, in accordance to the recent  American 
College of Medical Genetics and Genomic and the Association for 
Molecular Pathology standards and guidelines for the interpretation of 
sequence variants,12 variants with a minor allele frequency of >1/2500 
(LQTS prevalence) in the general population were removed. For train-
ing the binary classification model Q1VarPred, loss of function and 
gain of function variants were grouped together as dysfunctional, and 
a mild loss of function variant was either labeled as dysfunctional if 
its peak current was <50% or normal otherwise. The common variant 
G643S was classified as having normal function.18

Neural Network Architecture and Training
The neural network in the present study was a fully connected 3-layer 
feed-forward network with a sigmoid transfer function. The input 
layer consists of 2 nodes, 1 for each predictive feature. The output 
layer consists of a single neuron that outputs a numeric prediction of 
the functional impact of a given variant on the scale of 0 to 1 with 1 
being complete dysfunction. A hidden layer with 3 neurons was cho-
sen considering the fact that the dropout technique19 was adopted to 

prevent the neural network from overfitting, a phenomenon in which 
the learned model is excessively complex (eg, too many model pa-
rameters relative to the number of observations for training) and is 
poorly generalizable. However, we also tested hidden layers with up 
to 8 neurons, the results of which showed that the size of the hidden 
layer did not affect the performance of the neural network in a signifi-
cant way (Table II in the Data Supplement). The neural network was 
trained on numeric encoding of variant functional labels (1 for com-
plete dysfunction 0 for normal), with back-propagation of errors. The 
learning rate was set to 0.05 and momentum was set to 0.8. Weights 
were updated after each presentation of a variant to the network, and a 
constant weight decay of 0.02 was applied to reduce model flexibility.

Predictive Features
We used 2 features to characterize an amino acid substitution, namely 
rate of evolution, which quantifies the conservation of the sequence 
position where the substitution has occurred, and position-specific 
scoring matrix–based perturbation, which measures the radicalness of 
the substitution itself. These 2 features were chosen, before the data 
set was inspected, based on the rationale that a conserved position may 
tolerate less radical substitutions while a variable position may not tol-
erate more radical substitutions as—for example—observed in a sys-
tematic mutation study of bacteriophage T4 lysozyme.20 We confirmed 
that these features are critical among a limited number of features test-
ed (Table III in the Data Supplement). Details on how these 2 features 
were computed can be found in Methods in the Data Supplement.

Performance Metrics
The performance of the learned neural network model and other 
evaluated methods were quantified using the following metrics: true 
positive rate (TPR), true negative rate (TNR), positive predictive 
value (PPV), negative predictive value (NPV), accuracy, Matthew’s 
correlation coefficient (MCC),21 and area under the receiver operat-
ing characteristic curve (AUC). Note that the first 6 metrics can be 
computed only after all variants are classified at a specific threshold. 
Using the notation of true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN), these metrics are defined as:

TPR=
TP

TP+FN
 (1)

TNR=
TN

TN+FP
 (2)

PPV=
TP

TP+FP
 (3)

NPV=
TN

TN+FN
 (4)

Accuracy=
TP+TN

TP+TN+FP+FN  (5)

MCC=
TP TN-FP FN

TN+FN TP+FP TP+FN TN+FP

× ×

( )( )( )( )  (6)

respectively. A TP is a dysfunctional variant classified as dysfunction-
al, and TN is a normal variant classified as normal. MCC measures 
the correlation between predicted and observed binary classifications, 
with a value between −1 and 1. An MCC of 1 means perfect classifi-
cation, a value of 0 means no better than random classification, and 
−1 indicates a completely reversed classification. Because MCC is 
unaffected by class size, it is a particularly useful measure of classifi-
cation quality when the 2 classes are of different sizes.21 Computation 
of all performance metrics was accomplished using the ROCR pack-
age22 implemented in the R programming environment.23
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Estimating Generalization Ability
The generalization ability of a learned model is defined as its per-
formance in predicting new variants that are not used for training. 
A model with higher generalization ability is favored over ones with 
lower generalization ability. A common practice to estimate a model’s 
generalization ability is through a procedure called k -fold cross-val-
idation where the data set is randomly divided into k  equally-sized 
mutually exclusive subsets. The model is trained on k −1 subsets 
(collectively known as the training set), and its generalization ability 
is estimated on the remaining 1 subset (test set). Specifically, after 
the model is trained, a threshold is determined which maximizes the 
MCC on the training set, the same threshold is then used for comput-
ing the performance metrics on the test set. This process is repeated 
k  times each using a different one of the k  subsets as the test set and 
the remaining k −1 subsets as the training set. Every time a model is 
trained, its performance metrics are computed on the test set. In a k
-fold cross-validation, the generalization ability is estimated as the 
average of performance metrics over k  test sets. Because the num-
ber of ways a data set can be split into k  subsets is enormous, it is 
desirable to repeat the random splitting p times to reduce artifacts. 
In the current study, we chose k = 3 and p = 200, similar to a previ-
ous study.24 The splitting was stratified such that the class proportions 
of the training set and the test set are as close to that of the whole 
data set as possible. To ensure the consistency of comparison, the 
performance metrics of all evaluated methods were estimated using 
the exact same data. This means that every time the data set was ran-
domly split into 3 subsets, these subsets were used for calculating the 
performance metrics of all methods. The variability in performance 
metrics associated with random splitting of data set is presented in 
Table IV in the Data Supplement.

Results
Functional Studies Do Not Always Agree With 
Clinical Testing
We compiled a total of 107 functionally characterized 
KCNQ1 variants (Table I in the Data Supplement). Two 
important observations were made on this data set. First, not 
all case variants (variants identified in LQTS patient cohort, 
a total of 99 in our data set) are severely dysfunctional. Per 
our scheme of functional annotation (see Data Set and Crite-
ria for Annotating Functional Impact), 6 of 99 case variants 
are functionally normal and 8 of 99 cause only mild loss of 
function. Interestingly, these 2 fractions roughly agree with 
the previous estimate that ≈10% case variants may be false 
positives.16 However, a few variants identified in presumed 
healthy controls are severely dysfunctional (eg, V110I and 
A300T). A300T, which occurs within the pore-helix of the 
channel, was shown to cause a massive reduction of I

Ks
 and 

hyperpolarization of the voltage of half-activation of the 
channel both with and without the presence of the wild-type 
subunit.25 The V110I variant showed significant reduction in 
I

Ks
 and depolarization of voltage of half-maximal activation 

when expressed in the absence of the wild-type subunit.26 
This analysis reinforces the argument that translating protein 
dysfunction at the molecular level to clinical manifestation 
and also attributing clinical manifestation to protein dysfunc-
tion both need to be performed with caution.5

Position-Specific Rate of Evolution Reflects 
Functionally Critical Subdomains
The importance of a sequence site for protein structure or func-
tion can often be inferred from its conservation over evolution. 
We computed the position-specific rate of evolution for the 

entire sequence, as well as the mean rate of evolution for each 
of the 24 subdomains of KCNQ1 (Methods in the Data Supple-
ment). A lower rate of evolution indicates higher conservation.

Overall, the N-terminal domain (NTD) and C-terminal 
domain (CTD) are generally less conserved than subdomains 
within the channel domain (CD), as shown in Figure 1. The 
average rates of evolution for the NTD and CTD are 3.2 and 
2.5, respectively, whereas the average rate of evolution in the 
CD is 1.0. Within the CD, 6 subdomains have a mean rate of 
evolution below 1.0 (S4, S4-S5, S5, pore-helix, pore-loop, 
and S6). As expected, the pore-helix (residues 299–312) and 
pore-loop (residues 313–322) of the channel are the most con-
served subdomains, with mean rates of evolution of only 0.38 
and 0.41, respectively. This correlates with the critical role 
played by these components in achieving high ion selectivity 
for K+ over Na+ ions.27 The S4 segment of the CD, which har-
bors basic residues for sensing and responding to changes in 
membrane potential,28 has a mean rate of evolution of 0.61. The 
S4-S5 linker, which is thought to be responsible for transfer-
ring the conformational changes in the voltage sensor domain 
to the pore29 and serve as binding sites for phosphatidylinositol-
4,5-bisphosphate to modulate the deactivation rate of the chan-
nel,30 has a mean rate of evolution of 0.92. The S2-S3 linker, 
proposed in a recent study to also bind phosphatidylinositol-
4,5-bisphosphate,31 is only moderately conserved. Interestingly, 
although most subdomains of the CD exhibit a low mean rate 
of evolution, 2 subdomains, namely the S1-S2 linker and the 
S5-Pore linker, show substantially higher mean rates of evolu-
tion (2.5 and 1.9, respectively) than the rest of the CD.

Because the CTD has been shown to have 4 helices des-
ignated A to D,32 we computed the mean rate of evolution of 
each of these helices and their linkers to see if any of these sub-
domains are conserved. Our analysis shows that only helices 
A, B, and C have a mean rate of evolution <1.0, whereas the 
mean rate of evolution of helix D is substantially higher (1.9). 
This observation agrees with the functional role of helices A 
and B in binding calmodulin and the critical role of helix C in 
tetramerization of the intracellular C-terminal domain.32,33 The 
juxtramembrane subdomain S6-A, with a mean rate of evolu-
tion of 0.88, as well as the B-C linker, considered extremely 
conserved according to its mean rate of evolution (0.24), have 
yet to be shown to play any particular functional role.

Dysfunctional Variants Are Enriched in Selected 
Subdomains
Results from a recent study suggested that the probability 
of pathogenicity of a KCNQ1 variant depends in part on the 
topological location of the variant.17 However, in the previous 
study, the protein was only divided into 3 topological domains 
namely NTD, CD, and CTD. We mapped all variants in our 
data set onto the curve of position-specific rates of evolution 
(Figure 1A). We observed that dysfunctional variants prefer-
entially occur at positions with low rate of evolution, espe-
cially within a selected set of subdomains.

In fact, 95.7% (90 of 94) dysfunctional variants occur at 
positions where the rate of evolution is <2. In contrast, 61.5% 
(8 of 13) of normal variants occur at positions with rates of 
evolution >2. The 5 normal variants that occur at positions 
with a rate of evolution under 2 are Q147R, G179S, T391I, 
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R533W, and G643S. Interestingly, Q147R, G179S, T391I, and 
G643S are chemically conserved as judged by their Grantham 
distances34: Q→R (68), G→S (56), T→I (89). Nevertheless, 
this clear segregation of the functional impact of variants with 
respect to position-specific rate of evolution indicates that the 
rate of evolution of a sequence site preselected as one of the 
predictive features is indeed a strong predictor on whether 
variants occurring at the site will be dysfunctional or not.

In addition, we also computed the enrichment of dysfunc-
tional variants for each subdomain to confirm that such vari-
ants are indeed localized within a selected set of subdomains 
(Methods and Table V in the Data Supplement). An enrich-
ment of >1.0 indicates that the corresponding subdomain has 
higher than random chance of harboring dysfunctional vari-
ants. As shown in Figure 2, subdomains with higher than ran-
dom chance for dysfunctional variants are S0, S2-S3 linker, 
S3, S4, S4-S5, S5, pore-helix, pore-loop, S6, S6-A, B-C, and 
C. In particular, S0, S3, S4-S5 linker, S5, pore-loop, and S6-A 
each have an enrichment ≥3. As discussed in the previous sec-
tion, these subdomains are highly conserved.

Q1VarPred: A KCNQ1-Specific Predictor
A schematic representation of the architecture of Q1VarPred 
is shown in Figure 3A. Figure 3B shows a visualization of 
the Q1VarPred model of the relationship between predictive 

features (rate of evolution and position-specific scoring matrix–
based perturbation) and the prediction about functional impact 
(impact score 0, most likely normal; 1, most likely dysfunc-
tional). The contour surface indicates that the impact score has 
a sharper dependence on the rate of evolution than it does on 
position-specific scoring matrix–based perturbation. In particu-
lar, variants at conserved positions (rate of evolution close to 
0) are likely to be dysfunctional (impact score >0.5) even if the 
perturbation is small. An example of such variants is the dys-
functional V307L whose impact was predicted to be 0.68. The 
estimated rate of evolution of this position is 0.52, whereas the 
perturbation introduced by substituting Val for Leu at this posi-
tion is considerably small (3.7). Similarly, variants at evolution-
arily tolerated positions (eg, rate of evolution >3.0) tend to be 
normal even if the perturbation is large (eg, R583H). However, 
the impact score does rise along with increasing magnitude of 
perturbation, which is particularly important for predicting the 
impact at positions exhibiting intermediate rates of evolution.

Comparing Q1VarPred With Other Methods
We used a procedure called repeated cross-validation24 to 
estimate the generalization ability of Q1VarPred and other 
methods (see Estimating Generalization Ability). Seven com-
monly used genome-wide methods: PhD-SNP, Polyphen-2, 
PredictSNP, PROVEAN, SIFT, SNAP, and SNPs&GO and 

Figure 1. Analysis on the evolutionary variability of the KCNQ1 sequence. A, Position-specific rate of evolution. Shaded arrow bars on 
the top indicate the sequence range of N-terminal domain (NTD), channel domain (CD), and C-terminal domain (CTD), respectively. The 
small red bar on the horizontal axis highlights the selectivity filter TIGYG. Closed circles represent dysfunctional variants, and open circles 
represent normal variants. B, Mean rates of evolution for structurally distinct subdomains of NTD, CD, and CTD. Note that the trafficking 
determinant motif (TDM), which resides within the NTD, is singled out for its distinct functional role. Error bars indicate the 95% confi-
dence intervals (under Student t distribution) for the mean rate of evolution. by guest on June 5, 2018
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1 potassium channel-specific method called KvSNP were 
examined (Methods and Table VI in the Data Supplement). 
The Table shows that all performance metrics rank Q1VarPred 
the best, except for NPV and TPR. In general, AUC and MCC 
are considered the most robust metrics for evaluating classi-
fiers. AUC is independent of user-chosen and therefore pos-
sibly biased thresholds. MCC has the advantage to consider 
all 4 numbers (TP, TN, FP, and FN) and provides a much more 
balanced evaluation than TPR or TNR individually.35 In terms 
of AUC, Q1VarPred>PROVEAN>PhD-SNP>SNPs&GO>SI
FT>KvSNP>PredictSNP>PolyPhen-2>SNAP. This is similar 
to the findings of Leong et al36 except that PolyPhen-2 was 
shown to rank between PROVEAN and SNP&GO, and PhD-
SNP and KvSNP were not evaluated in Leong et al.36 Methods 

that perform better than Q1VarPred in TPR do so at a cost of 
a low TNR, that is, the threshold is chosen to minimize the 
loss of TP at the cost of predicting many FP. In some disease 
conditions, a high fraction of FP might be acceptable. How-
ever, in LQTS and related channelopathies, the cost of FP is 
as drastic as that of FN.6 It is also worth noting that while 
KvSNP is gene specific, our evaluation shows that its perfor-
mance is worse than most genome-wide methods on this data 
set. The primary cause of the inflation in KvSNP’s claimed 
performance is probably its convolution of data set prepara-
tion and feature selection, where 85.5% of neutral variants 
were generated from variable sequence positions, and later 
several sequence conservation-based features were selected as 
predictive features.37

Figure 2. This bar graph plots subdomain-specific enrichment of dysfunctional variants, showing that dysfunctional variants are enriched 
in a selected set of subdomains (S0, S3, S4-S5, S5, pore-helix, pore-loop, S6-A, see Table V in the Data Supplement for the residue 
ranges these subdomains correspond to). One needs to keep in mind that because of the sparsity of functionally characterized variants, 
the estimates of enrichments are likely to be biased. NTD indicates N-terminal domain.

Figure 3. A, A schematic representation of the architecture of Q1VarPred. The input layer is composed of 2 predictive features: rate of 
evolution (ER) and perturbation derived from position-specific scoring matrix (PSSM; PP). The hidden layer has 3 neurons and the output 
layer has 1 neuron that computes the final predicted functional impact. B, A visualization of the Q1VarPred-mapped mathematical rela-
tionship between predictive features (rate of evolution and perturbation) and functional impact. The vertical axis is functional impact on 
the scale of 0 to 1 with 1 being complete dysfunction.
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Discussion
From Functional Impact to Clinical Disease 
Diagnosis
The goal of our study was to create a highly tailored computa-
tional method to predict functional impact. However, translating 
evidence on functional impact to clinical disease diagnosis is 
far from trivial. First, every computational method has a certain 
degree of accuracy and reliability, and those of genome-wide 
methods are particularly limited. In fact, this is one of the pri-
mary motivations of the present study. Second, variants that are 
dysfunctional at the molecular level may not have clinical mani-
festation. For example, the A300T variant, which was confirmed 
experimentally to be severely dysfunctional,25 was later identified 
in a cohort considered to be clinically normal.16 Such dysfunc-
tional variants may have been rescued by compensating genetic 
variations. Third, trying to predict the clinical outcome without 
considering the mode of inheritance of LQTS may be problem-
atic. The mode of inheritance is a key factor when determining the 
clinical relevance of a genotype for LQTS. For example, 4 variants 
in our data set (R231H, W305S, A525T, and R594Q) were func-
tionally normal when expressed in combination with the wild-
type channel but were severely dysfunctional in the absence of the 
wild type. W305S was identified in members of 2 consanguineous 
families with the recessive Jervell and Lange-Nielsen syndrome,38 
and A525T was suspected to cause the recessive form of Romano-
Ward syndrome.39 Moreover, a functionally normal variant may 
have compound genetic variations within the same gene or other 
genes that may obviate or, alternatively, contribute to the clini-
cal phenotype.40 In light of these considerations, Q1VarPred was 
intended for judicious use by researchers or clinicians in conjunc-
tion with complementary clinical and genetic evidence to assess 
the disease susceptibility caused by KCNQ1 variants.

Unexpected Conserved Subdomains in the 
C-Terminal Domain
Figure 4 shows the topological distributions of position-specific 
rate of evolution and subdomain-specific enrichment of dysfunc-
tional variants. In our analysis of the rate of evolution in the CTD, 
we found a few topological subdomains with conserved mean 

rate of evolution (Figure 1B), predicting important functional or 
structural roles. Two subdomains, the S6-A linker and the B-C 
linker, were shown to have a surprisingly low mean rate of evolu-
tion (0.88 and 0.24, respectively). While S6-A has an estimated 
enrichment of dysfunctional variants of 3.0, that of the B-C linker 
is unexpectedly low (1.0; Figure 2; Table V in the Data Supple-
ment). The low enrichment of the B-C linker is likely biased 
because of the sparsity of functionally validated variants (eg, only 
3 functionally validated variants are located in the B-C linker). In 
fact, another 6 variants (Table VII in the Data Supplement) found 
in this subdomain have been deposited in ClinVar.41 However, 
they were not included into our data set because we were not 
able to find literature describing their functional validation. The 
enrichment of the B-C linker is likely to increase when larger data 
sets of functionally validated variants become available for esti-
mating enrichments. More importantly, there seems to be a lack 
of study documenting the functional roles the S6-A linker and the 
B-C linker. Nevertheless, based on their low rate of evolution, we 
alert investigators about the potential high functional impact of 
variants found in these 2 subdomains.

Machine-Learning Model
Ideally, a machine-learning algorithm should produce a 
learned model that is accurate at predicting new observations 
and, at the same time, simple enough to allow straightforward 
interpretation. In general, linear models are easier to interpret 
while nonlinear models are more powerful in cases where 
classes are not linearly separable. We chose a neural network, 
which generally is considered to be a nonlinear model, for 
the present study to leverage our extensive experience with 
neural networks and an established library for feature engi-
neering and model building.42–46 Admittedly, a logistic regres-
sion model performed only slightly worse (AUC=0.855), 
and a linear discriminant classifier performed comparably 
(AUC=0.870). However, given the complexity in the mecha-
nisms behind KCNQ1 dysfunction, we expect that the true 
decision boundary between normal and dysfunctional variants 
is complex. When additional experimental data become avail-
able, the advantage of neural networks for prediction over lin-
ear models is likely to become more substantial.

Table. Comparison of Q1VarPred With Other Methods

Method

Mean Performance Metric

AUC MCC PPV NPV Accuracy TPR+TNR TPR TNR

Q1VarPred 0.884 0.581 0.968 0.537 0.881 1.680 0.895 0.785

KvSNP 0.662 0.313 0.922 0.344 0.832 1.255 0.887 0.438

PhD-SNP 0.727 0.386 0.941 0.390 0.820 1.453 0.850 0.603

PolyPhen-2 0.636 0.340 0.912 0.547 0.866 1.272 0.939 0.333

PredictSNP 0.652 0.355 0.918 0.459 0.850 1.303 0.912 0.391

PROVEAN 0.770 0.510 0.949 0.537 0.869 1.536 0.902 0.634

SIFT 0.680 0.360 0.927 0.503 0.861 1.364 0.921 0.443

SNAP 0.542 0.101 0.895 0.158 0.771 1.085 0.844 0.241

SNPs&GO 0.697 0.307 0.939 0.296 0.767 1.384 0.792 0.592

AUC indicates area under the receiver operating characteristic curve; MCC, Matthew’s correlation coefficient; NPV, negative predictive value; 
PPV, positive predictive value; TNR, true negative rate; and TPR, true positive rate.
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Factors Contributing to the Improved Performance 
of Q1VarPred
Q1VarPred offers improved overall performance in predicting 
functional impact of variants on a KCNQ1-specific basis com-
pared with the other evaluated tools (Table). Although most 
tools allow for predictions for a wide range of proteins, the 
fact that each method applies a single threshold to classify 
variants on all proteins may be partially responsible for their 
weaker overall performance on KCNQ1 variants. In addition, 
recent work has shown that contemporary variant–phenotype 
and variant–stability prediction algorithms are substantially 
worse at predicting outcomes for membrane proteins, such as 
KCNQ1, than for water soluble proteins.47

The observed higher performance of Q1VarPred may also be 
attributed to better predictive features. Many methods use mul-
tiple sequence alignment-derived position-specific conservation 
scores as predictive feature, presumably based on the assump-
tions that the functional importance of a given position dictates 
how conserved this position is and, conversely, that the degree 
of conservation indicates the functional importance of this posi-
tion. Although this latter assumption is often valid, position-
specific conservation scores computed directly from multiple 
sequence alignment without considering the evolutionary history 

of the aligned protein family may be biased because of unevenly 
sampled sequence space. Numerous position-specific quantita-
tive conservation scores have been proposed over the years,48 
and all evaluated methods except the meta-predictor PredictSNP 
use as position-specific conservation measures of some sort 
derived from multiple sequence alignment as predictive fea-
tures. However, none of these methods consider the topology 
and branch lengths of phylogenetic trees as the method used in 
the current study does (Methods in the Data Supplement). Thus, 
these conservation measures may lead to less accurate estima-
tions of rate of evolution.

The other predictive feature used in Q1VarPred is the per-
turbation derived in the context of a position-specific scor-
ing matrix. This feature measures how much less likely it is 
for the variant to occur at a sequence position relative to the 
wild type. The higher the perturbation, the less likely for the 
variant to replace the wild-type residue at a specific position. 
Although the position-specific rate of evolution presumably is 
a strong predictor of functional impact, it only indicates how 
likely it is that the wild-type amino acid at this sequence posi-
tion changes. It does not, however, tell how likely it is that 
the wild-type amino acid is changed to one particular amino 
acid type over the others. In other words, the perturbation adds 

Figure 4. A global view of the topological distribution of rate of evolution and enrichment of dysfunctional variants. NTD indicates N-ter-
minal domain.
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additional information by complementing position-specific 
rates of evolution with what the actual variants are.

Limitations and Future Direction
The primary limitation of the current study is the size of the 
data set. Although a substantial amount of effort was spent 
by many laboratories to experimentally characterize the 107 
variants treated in this study, the data set used in this study 
is still small, relative to that used to train other contemporary 
variant-effect predictors. As a result, we were limited from 
selecting a set of most relevant features in a systematic, algo-
rithmic manner. Thus, it is very likely that we missed some 
very informative sequence-based features. When larger data 
sets become available, Q1VarPred can be retrained and new 
predictive features can be tested. In addition, our estimation 
of enrichment of dysfunctional variants for each subdomain 
is also likely to be biased because of this data sparsity. Even 
though the enrichment values correlate well with average 
rates of evolution and our analysis shows that functionally 
important subdomains tend to be more enriched with dysfunc-
tional variants, there is currently not enough data available to 
demonstrate that such relationship for KCNQ1 is statistically 
significant.

Recent investigations into machine learning have shown 
that training neural networks on multiple traits/outcomes per 
training example can improve performance.49,50 Specifically, 
the advantages of simultaneously training a neural network to 
predict multiple outcome variables (disease severity, electro-
physiological parameters, etc.) may enable a more accurate 
prediction of phenotype traits as well. Previous work aimed 
at predicting secondary structure and membrane burial for 
residues has suggested that neural networks trained to predict 
multiple outcomes are particularly beneficial when the data 
set size is especially small.43 This suggests that such neural 
networks may be particularly suitable to leverage the diverse 
experimental parameters available for LQTS variants and 
phenotypes.

The method developed in this study is modular in the sense 
that one possible future direction is to combine this method 
with other predictors—such as estimation of the impact of 
genetic variations on protein stability, to come up with predic-
tions that are both more reliable and that also suggest mecha-
nisms underlying variation-induced gain or loss of function.
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CLINICAL PERSPECTIVE
Congenital long-QT syndrome is a heart rhythm disorder that affects ≈1 in 2500 births. It predisposes children and young 
adults to a type of ventricular tachycardia (torsades de pointes) and sudden cardiac death. An emerging standard-of-care for 
long-QT syndrome uses clinical genetic testing to identify long-QT syndrome–associated variants in the KCNQ1 potassium 
channel. However, variants of unknown significance for which there is inadequate evidence to classify as being patho-
genic are common findings. Although computational methods, mostly developed for genome-scale predictions, have been a 
common predictive approach to suggest genotype–phenotype relations for variants of unknown significance, hardly any is 
sufficiently accurate for clinical use related to channelopathies. This study presents a KCNQ1-specific genotype−channel 
function relationship predictor Q1VarPred, which was trained on a data set of KCNQ1 variants whose functional impact has 
been experimentally validated. Q1VarPred offers substantially improved overall performance in predicting functional impact 
of variants on a KCNQ1-specific basis compared with the other 8 methods evaluated in the study. It is publicly available as 
a web server at http://meilerlab.org/q1varpred to ease its access by researchers and clinicians. Along with developing this 
method, a detailed analysis on the conservation of the amino acid sequence of KCNQ1 showed that dysfunctional variants 
are enriched in a selected set of highly conserved subdomains. This finding together with the functional impact predicted by 
Q1VarPred may be considered as supplementary information to the interpretation of variants of known significance.
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1 

SUPPLEMENTAL MATERIAL 

Methods 

Computation of predictive features 

Position-specific rate of evolution was estimated using the Rate4Site method.1 While rates of 

evolution are commonly measured as the number of substitutions per sequence position per 

year,2 it should be noted that the rate estimated by Rate4Site is relative to the average 

evolutionary rate across all positions and hence is unitless. The input multiple sequence 

alignment (MSA) of KCNQ1 homologs to Rate4Site was obtained by running HHblits against 

the Uniprot20 sequence database,3 with minimum coverage of master sequence (KCNQ1 wild-

type sequence) set to 25%, minimum sequence identity to master sequence set to 15%, maximum 

pairwise sequence identity set to 90%, and E-value cutoff for inclusion in result alignment set to 

0.001. The total number of aligned sequences was limited to 300 as our testing showed that 

Rate4Site suffered from underflow problems when larger numbers of sequences were used.  

For characterizing the severity of amino acid substitutions at a position, it is important to conduct 

the assessment in the context of MSA where the perturbation resulting from amino acid 

substitution can be quantified from the perspective of protein evolution. We derived this 

perturbation from the position-specific scoring matrix (PSSM, Figure S1) obtained by searching 

the NCBI non-redundant sequence database4 with PSI-BLAST5 for four iterations. The E-value 

inclusion threshold was set to 0.00001. For a protein of length ܮ, a PSSM is a ܮ ൈ 20 matrix 

containing log ratios of the estimated frequency of each of the 20 amino acids to occur at each 

position relative to the expected frequency of the wild-type amino acid in a random sequence. If 

ܲ is the probability for amino acid A to occupy a position and  ܲ
 is its background probability, 

then the PSSM entry for A at this position equals ߣ ln ಲ
ಲ
బ, where ߣ is a scaling factor built in PSI-
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BLAST.5 One might recognize that this formula resembles the equation for calculating Gibbs 

free energy change for a chemical reaction (∆ܩ ൌ െܴܶ lnܭ). Similar in spirit to free energy 

perturbation, we define the perturbation introduced by amino acid substitution from A to B in the 

context of MSA as: ߣ ൬ln
ಲ
ಲ
బ െ ln ಳ

ಳ
బ൰. Intuitively, the more substantial the perturbation the less 

likely it is for a variation to occur without a functional or structural impact. 

Tested genome-wide tools 

Seven genome-wide prediction tools: PhD-SNP,6 PolyPhen-2,7 PredictSNP,8 PROVEAN, SIFT,9 

SNAP10, and SNPs&GO and a potassium channel-specific method KvSNP11 were tested for their 

ability to predict functionality of KCNQ1 variants. PhD-SNP, PolyPhen-2, PredictSNP, SIFT, 

and SNAP were recently shown to have an overall Matthew's correlation coefficient (MCC) > 

0.35 and an overall area under the receiver-operating characteristics curve (AUC) > 0.70 on a 

fully independent test set consisting of variants from multiple genes.8 PROVEAN and 

SNPs&GO were shown to have high accuracy to classify LQTS gene variants. These selected 

tools differ in the machine learning algorithms with which they were trained and in the required 

input features. A summary of these tools is presented in Table S4.  

Calculation of enrichment of dysfunctional variants 

Based on a homology model of the homotetrameric transmembrane channel domain,12 and a 

structural study of the C-terminal domain of KCNQ1,13 we mapped the sequence of KCNQ1 into 

24 topologically distinct regions and assigned each variant to the region within which it is 

located (Table S5). The enrichment of dysfunctional variants for a region is computed as the 

ratio of observed number of dysfunctional variants ( ௩ܱ) to the number of dysfunctional variants 

that would otherwise be observed if each sequence position were equally likely to raise 

dysfunctional variants, denoted as ܧ௩. ܧ௩ can be easily obtained with 	
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௩ܧ ൌ
௦ܮ
ܮ

ൈ ௩ܰ 

where  ܮ௦ and ܮ are the length of the segment and the protein, respectively, and  ௩ܰ is the total 

number of dysfunctional variants in the data set. 

 

 

 

Supplemental Tables: 

 

Table S1. Functionally characterized KCNQ1 variants curated from the literature. (See excel file 

for supplemental table.) 

 

Table S2. Performance of the neural network model with varied sizes of hidden layer. (See excel 

file for supplemental table.) 

 

Table S3. Information gain of a set of tested predictive features. (See excel file for supplemental 

table.) 

 

Table S4. Summary of the median and interquartile interval [Q1, Q3] of each performance 

metric. (See excel file for supplemental table.) 

 

Table S5. Topological subdomains of KCNQ1 and the enrichment of dysfunctional variants 

within each region. (See excel file for supplemental table.) 
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Table S6. Summary of methods evaluated in this study. (See excel file for supplemental table.) 

 

Table S7. Six other variants in the B-C linker deposited in the ClinVar database as of June 2017. 

(See excel file for supplemental table.) 

 

 

 

 

Supplemental Figure: 

 

Figure S1. An illustration of position-specific scoring matrix (PSSM). For a protein of length ܮ, 

a PSSM is a ܮ ൈ 20 matrix containing log ratios of the estimated frequency of each of the 20 

amino acids to occur at each position relative to the expected frequency of the wild-type amino 

acid in a random sequence. If ܲ is the probability for amino acid A to occupy a position and  ܲ
 

is its background probability, then the PSSM entry for A at this position equals ߣ ln ಲ
ಲ
బ, where ߣ 

is a scaling factor built in PSI-BLAST.5 
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Wild Variant Clinical 
Iks 

ratio 

V1/2 

(mV) 

Activation τ 

ratio 

Deactivation τ 

ratio 

 

Surface Annotation Label Reference 

46 A T Case 100% 0 0.6    Normal Normal 14 

             

110 V I Control 40% 30    
Normal 

Severe 

LOF 
Dysfunctional 15 

111 Y C Case 0%     
Absent 

Severe 

LOF 
Dysfunctional 16 

114 L P Case 0%     
Absent 

Severe 

LOF 
Dysfunctional 16 

117 P L Case 0%     
Impaired 

Severe 

LOF 
Dysfunctional 16 

140 S G Case 150%      Severe 

GOF 
Dysfunctional 17 

141 V M Case 300% 0     Severe 

GOF 
Dysfunctional 18 

147 Q R Case 60% 0     Mild LOF Normal 19 

168 G R Case 5%      Severe 

LOF 
Dysfunctional 20 

174 R C Case 47% 17 1    Mild LOF Dysfunctional 21 

178 A T Case 41% 45 1.68 0.86 
 

Impaired 
Severe 

LOF 
Dysfunctional 22 

179 G S Control 54% -12     Mild LOF Normal 20 

190 R Q Case 0%      Severe 

LOF 
Dysfunctional 23 

191 L P Case 22% 0    
Impaired 

Severe 

LOF 
Dysfunctional 24 

193 F L Case 80% 0 1.83    Severe 

LOF 
Dysfunctional 25 

202 D E Case 11% 54.6 1 0.33 
  Severe 

LOF 
Dysfunctional 26 



202 D H Case 41% 16.6 0.83 0.26 
 

Normal 
Severe 

LOF 
Dysfunctional 26 

202 D N Case 20% 23.8 0.55 0.09 
 

Normal 
Severe 

LOF 
Dysfunctional 26 

204 I F Case 23% 53.3 7.25 0.43 
 

Normal 
Severe 

LOF 
Dysfunctional 26 

204 I M Case 34% 36.1 1.16 0.65 
 

Normal 
Severe 

LOF 
Dysfunctional 26 

204 I N Case  32.9 2.47 0.7 
  Severe 

LOF 
Dysfunctional 26 

205 V M Case 36% 20 1.48 0.42 
  Severe 

LOF 
Dysfunctional 27 

207 V M Control 93% 7.1 1.4 1.2   Normal Normal 26 

209 S F Case 35% -48.7     Severe 

LOF 
Dysfunctional 26 

209 S P Case 200% -42.4  5.7 
  Severe 

GOF 
Dysfunctional 28 

215 V M Case 41% 20.2     Severe 

LOF 
Dysfunctional 26 

225 S L Case 10% 11    
Normal 

Severe 

LOF 
Dysfunctional 29 

231 R C Case 5%      Severe 

LOF 
Dysfunctional 30 

231 R H Case 15% 40     Severe 

LOF 
Dysfunctional 30 

235 I N Case 10%      Severe 

LOF 
Dysfunctional 31 

236 L R Case 0% 54    
Impaired 

Severe 

LOF 
Dysfunctional 32 

243 R C Case 12% 67 1    Severe 

LOF 
Dysfunctional 21 

243 R H Case 13%     
Normal 

Severe 

LOF 
Dysfunctional 33 

248 W R Case 0%      Severe 

LOF 
Dysfunctional 34 



251 L P Case 0%     
Normal 

Severe 

LOF 
Dysfunctional 35 

254 V M Case 7% 41.5     Severe 

LOF 
Dysfunctional 36 

258 H R Case 5% -44 0.5 2.5 
 

Impaired 
Severe 

LOF 
Dysfunctional 37 

259 R C Case 30% 10     Severe 

LOF 
Dysfunctional 38 

259 R H Case 200% 1  1.7 
 

Normal 
Severe 

GOF 
Dysfunctional 39 

261 E D Case 9%      Severe 

LOF 
Dysfunctional 33 

261 E K Case 5%      Severe 

LOF 
Dysfunctional 34 

265 T I Case 100% 8 2    Severe 

LOF 
Dysfunctional 14 

269 G D Case 0%      Severe 

LOF 
Dysfunctional 40 

269 G S Case 15% 70.7 1 0.4 
 

Impaired 
Severe 

LOF 
Dysfunctional 41 

272 G V Case 34% 10     Severe 

LOF 
Dysfunctional 42 

275 F S Case 34% 27 1.5 2 
 

Impaired 
Severe 

LOF 
Dysfunctional 43 

277 S L Case 0% -8.7     Severe 

LOF 
Dysfunctional 44 

279 F I Case 150% -25 0.42 1 
 

Normal 
Severe 

GOF 
Dysfunctional 45 

281 Y C Case 0%     
Normal 

Severe 

LOF 
Dysfunctional 29 

283 A T Case 20% 9     Severe 

LOF 
Dysfunctional 46 

296 F S Case 12% -10     Severe 

LOF 
Dysfunctional 14 

300 A T Control 15% -19    
Normal 

Severe 

LOF 
Dysfunctional 29 



302 A V Case 5%      Severe 

LOF 
Dysfunctional 14 

305 W S Case 0%      Severe 

LOF 
Dysfunctional 40 

307 V L Case 130% -18 0.52    Severe 

GOF 
Dysfunctional 47 

310 V I Case 0% 60     Severe 

LOF 
Dysfunctional 20 

313 I K Case 0%      Severe 

LOF 
Dysfunctional 48 

314 G S Case 12%      Severe 

LOF 
Dysfunctional 49 

315 Y C Case 0%     
Normal 

Severe 

LOF 
Dysfunctional 29 

315 Y S Case 0%      Severe 

LOF 
Dysfunctional 40 

316 G E Case 18% 0     Severe 

LOF 
Dysfunctional 14 

320 P A Case 0%      Severe 

LOF 
Dysfunctional 50 

320 P H Case 0%      Severe 

LOF 
Dysfunctional 50 

322 T A Case 0%     
Impaired 

Severe 

LOF 
Dysfunctional 51 

322 T M Case 0%     
Impaired 

Severe 

LOF 
Dysfunctional 51 

325 G R Case 0%      Severe 

LOF 
Dysfunctional 52 

338 S F Case 5% 12    
Normal 

Severe 

LOF 
Dysfunctional 53 

339 F S Case 4% 1    
Normal 

Severe 

LOF 
Dysfunctional 53 

341 A V Case 6% 60 5.59 0.29 
 

Normal 
Severe 

LOF 
Dysfunctional 54 

342 L F Case 0%      Severe 

LOF 
Dysfunctional 40 



343 P S Case 0%      Severe 

LOF 
Dysfunctional 55 

344 A V Case 100% 40     Severe 

LOF 
Dysfunctional 56 

357 Q R Case 27% 20 3 1 
 

Impaired 
Severe 

LOF 
Dysfunctional 57 

360 R G Case 20%      Severe 

LOF 
Dysfunctional 14 

366 R P Case 0% 24.1     Severe 

LOF 
Dysfunctional 58 

366 R Q Case 22% 29 1    Severe 

LOF 
Dysfunctional 21 

366 R W Case 30% 39.2    
Impaired 

Severe 

LOF 
Dysfunctional 58 

371 A T Case 0% 21.9     Severe 

LOF 
Dysfunctional 58 

373 S P Case 5% 37.9    
Impaired 

Severe 

LOF 
Dysfunctional 58 

379 W R Case 0%     
Impaired 

Severe 

LOF 
Dysfunctional 32 

380 R S Case 33% 0    Normal Mild LOF Dysfunctional 59 

391 T I Case 85% 0     Normal Normal 20 

392 W R Case 0% 28.3     Severe 

LOF 
Dysfunctional 58 

393 K M Case 33% 0    Normal Mild LOF Dysfunctional 59 

393 K N Control 100% 13.3     Normal Normal 58 

397 R Q Control 90% 0    Impaired Normal Normal 60 

397 R W Control 40% 0 1 1  Normal Mild LOF Dysfunctional 59 

417 V M Case 100% 0 1    Normal Normal 36 

448 P R Control 120% 0     Normal Normal 20 

455 H Y Case 43% 0 0.6    Mild LOF Dysfunctional 14 

520 M R Case 0%     
Absent 

Severe 

LOF 
Dysfunctional 61 



 

 

 

 

522 Y S Case 10% 7    
Impaired 

Severe 

LOF 
Dysfunctional 32 

525 A T Case 36% 22 1.34 1.08 
 

Impaired 
Severe 

LOF 
Dysfunctional 22 

533 R W Case 72% 13.9 1    Normal Normal 23 

539 R W Case 17% 33.9 1 0.41 
  Severe 

LOF 
Dysfunctional 23 

546 S L Case 25% 50.7 1.3 0.81 
 

Normal  
Severe 

LOF 
Dysfunctional 62 

555 R C Case 25% 60     Severe 

LOF 
Dysfunctional 40 

555 R H Case 12% 50 1.1 0.72 
 

Normal 
Severe 

LOF 
Dysfunctional 63 

557 K E Case 0%     
Normal 

Severe 

LOF 
Dysfunctional 64 

562 R M Case 43% 43.3 1.55 1.07 
 

Normal  
Severe 

LOF 
Dysfunctional 62 

583 R H Case 100% 0     Normal Normal 65 

589 G D Case 15% 33    
Impaired 

Severe 

LOF 
Dysfunctional 66 

590 A T Case 45% 10    Normal Mild LOF Dysfunctional 67 

594 R Q Case 5% 60     Severe 

LOF 
Dysfunctional 20 

611 D Y Case 100% 0     Normal Normal 68 

619 L M Case 1%     
Normal 

Severe 

LOF 
Dysfunctional 63 

643 G S Control 35% 1.1 1 0.72    Mild LOF Normal 69 



Table S2 

# 

hidden 

neurons 

MCC AUC 

1 0.568 0.882 

2 0.567 0.881 

3 0.572 0.884 

4 0.562 0.883 

5 0.581 0.881 

6 0.584 0.886 

7 0.581 0.885 

8 0.559 0.88 

 

 

Table S3 

Feature 
Information 

gain 

Threshold maximizes information 

gain 

Rate of evolution 0.22 1.46 

PSSM perturbation 0.18 5.89 

Change in hydrophobicity 0.035 0.01 

Predicted residue packing density 
70 

0.024 11.96 

Grantham score 71 0.02 103 

Change in charge 0.018 NA 

Change in SASA* 0.017 29.91 

*SASA: solvent accessible surface area   
 

 



Table S4 

Method Medians and [Q1, Q3] intervals of performance metrics 

  AUC MCC PPV NPV Accuracy TPR TNR 

Q1VarPred 
0.884  

[0.876, 0.890] 

0.584  

[0.560, 0.608] 

0.967  

[0.966, 0.968] 

0.533  

[0.502, 0.565] 

0.889  

[0.871, 0.890] 

0.905 

 [0.885, 0.906] 

0.783 

 [0.767, 0.783] 

KvSNP 
0.669  

[0.577, 0.753] 

0.306 

 [0.213, 0.462] 

0.926  

[0.900, 0.938] 

0.333 

 [0.250, 0.429] 

0.829 

 [0.800, 0.865] 

0.903  

[0.839, 0.935] 

0.500 

 [0.250, 0.600] 

PhD-SNP 
0.726  

[0.653, 0.794] 

0.369 

 [0.293, 0.494] 

0.935  

[0.913, 0.963] 

0.364 

 [0.273, 0.500] 

0.829 

 [0.771, 0.865] 

0.871 

 [0.774, 0.935] 

0.600 

 [0.500, 0.750] 

PolyPhen-2 
0.625  

[0.593, 0.718] 

0.372 

 [0.298, 0.477] 

0.912 

 [0.899, 0.935] 

0.500  

[0.333, 0.667] 

0.886  

[0.857, 0.914] 

0.968  

[0.935, 1.000] 

0.250 

 [0.250, 0.500] 

PredictSNP 
0.653  

[0.593, 0.718] 

0.306  

[0.211, 0.470] 

0.912  

[0.906, 0.936] 

0.500  

[0.333, 0.600] 

0.865  

[0.838, 0.892] 

0.935  

[0.903, 0.968] 

0.400 

 [0.250, 0.500] 

PROVEAN 
0.788 

 [0.722, 0.810] 

0.556  

[0.468, 0.576] 

0.956  

[0.938, 0.957] 

0.557 

 [0.500, 0.593] 

0.896 

 [0.880, 0.899] 

0.926  

[0.925, 0.936] 

0.683 

 [0.579, 0.700] 

SIFT 
0.684  

[0.593, 0.786] 

0.435 

 [0.313, 0.532] 

0.926  

[0.900, 0.962] 

0.500  

[0.333, 0.600] 

0.865 

 [0.838, 0.886] 

0.935  

[0.875, 0.969] 

0.500 

 [0.250, 0.750] 

SNAP 
0.512  

[0.484, 0.605] 

0.170  

[0.089, 0.255] 

0.886  

[0.875, 0.909] 

0.167 

 [0.000, 0.222] 

0.800  

[0.714, 0.865] 

0.875  

[0.750, 0.969] 

0.200 

 [0.000, 0.400] 

SNPs&GO 
0.706  

[0.638, 0.762] 

0.326 

 [0.232, 0.405] 

0.933  

[0.920, 0.960] 

0.286  

[0.250, 0.333] 

0.771 

 [0.730, 0.829] 

0.806 

 [0.742, 0.871] 

0.600  

[0.500, 0.750] 

 

 

 

 

 

 

 

 



Table S5 

 

Subdomain Range Length 
Observed number of 

variants 

Expected number of 

variants 
Enrichment 

NTD 
1-110+118-

121 
114 1 16 0.1 

S0 111-117 7 3 1 3 

S1 122-146 25 2 3 0.7 

S1-S2 147-153 7 0 1 0 

S2 154-177 24 2 3 0.7 

S2-S3 178-197 20 4 3 1.3 

S3 198-215 18 10 3 3.3 

S3-S4 216-222 7 0 1 0 

S4 223-241 19 5 3 1.7 

S4-S5 242-259 18 8 3 2.7 

S5 260-284 25 11 3 3.7 

S5-pore 285-298 14 1 2 0.5 

pore-helix 299-312 14 5 2 2.5 

pore-loop 313-322 10 9 1 9 

S6 323-360 38 9 5 1.8 

S6-A 361-369 9 3 1 3 

A 370-389 20 4 3 1.3 

A-B 390-506 117 4 16 0.3 

B 507-532 26 3 4 0.8 

B-C 533-547 15 2 2 1 

C 548-562 15 4 2 2 

C-D 563-587 25 0 3 0 

D 588-622 35 4 5 0.8 

D-end 623-676 54 0 8 0 

NTD: N-terminal 

domain      



Table S6 

 

Tool Algorithm Link Reference 

KvSNP 
Fast random 

forest 
http://www.bioinformatics.leeds.ac.uk/KvDB/KvSNP.html  

6 

PhD-SNP 

Support 

vector 

machine 
http://snps.biofold.org/phd-snp/phd-snp.html  

6, 72 

PolyPhen-2 
Naïve Bayes 

classification 
http://genetics.bwh.harvard.edu/pph2/bgi.shtml  

72 

PredictSNP Metaserver http://loschmidt.chemi.muni.cz/predictsnp1/  

73 

PROVEAN 
Sequence 

conservation 
http://provean.jcvi.org/seq_submit.php  

 

SIFT 
Sequence 

conservation 
http://siftdna.org/www/SIFT_pid_subst_all_submit.html  

74 

SNAP 
Neural 

networks 
https://rostlab.org/services/snap2web/  

10 

SNPs&GO 

Support 

vector 

machine 
http://snps.biofold.org/snps-and-go/snps-and-go.html  

  

    
 

 

 

 

 

 

http://www.bioinformatics.leeds.ac.uk/KvDB/KvSNP.html
http://snps.biofold.org/phd-snp/phd-snp.html
http://genetics.bwh.harvard.edu/pph2/bgi.shtml
http://loschmidt.chemi.muni.cz/predictsnp1/
http://provean.jcvi.org/seq_submit.php
http://siftdna.org/www/SIFT_pid_subst_all_submit.html
https://rostlab.org/services/snap2web/
http://snps.biofold.org/snps-and-go/snps-and-go.html


Table S7 

 

Variant Clinical significance Review status 

R539Q 
Uncertain 

significance 
Criteria provided, single submitter 

V541I 
Uncertain 

significance 

Criteria provided, multiple submitters, no 

conflicts 

E543K Not provided No assertion provided 

Q544L 
Uncertain 

significance 
Criteria provided, single submitter 

S546L 

Pathogenic/likely 

pathogenic, not 

provided 

Criteria provided, multiple submitters, no 

conflicts 

Q547R Not provided No assertion provided 

   
 

 

 

Training Dataset 

Residue 

ID 

Wild 

Type Variant PSSM 

Rate of 

Evolution Label 

46 A T 1.22 4.094 0 

110 V I 1.77 1.976 1 

111 Y C 12.38 1.094 1 

114 L P 8.91 0.3189 1 

117 P L 12.45 0.4344 1 

140 S G 7.58 0.3528 1 

141 V M 6.46 0.5978 1 

147 Q R 5.88 1.995 0 

168 G R 9.72 1.595 1 



174 R C 11.94 0.151 1 

178 A T 7.14 0.4896 1 

179 G S 8.23 1.544 0 

190 R Q 7.69 0.6565 1 

191 L P 8.57 1.967 1 

193 F L 8.26 1.243 1 

202 D E 7.31 0.1174 1 

202 D H 10.14 0.1174 1 

202 D N 7.56 0.1174 1 

204 I F 7.48 1.166 1 

204 I M 2.76 1.166 1 

204 I N 10.53 1.166 1 

205 V M 6.81 0.4373 1 

207 V M 4.48 2.322 0 

209 S F 10.14 0.3612 1 

209 S P 8.45 0.3612 1 

215 V M 4.18 1.855 1 

225 S L 10.22 0.5382 1 

231 R C 12.58 0.2855 1 

231 R H 9.19 0.2855 1 

235 I N 11.64 0.4978 1 

236 L R 9.01 0.7966 1 

243 R C 12.58 0.3992 1 

243 R H 9.19 0.3992 1 

248 W R 17.24 1.461 1 

251 L P 9.77 0.6864 1 

254 V M 6.81 0.738 1 

258 H R 12.12 1.042 1 

259 R C 9.64 0.914 1 

259 R H 7.68 0.914 1 

261 E D 6.62 0.6798 1 



261 E K 7.41 0.6798 1 

265 T I 7.52 0.3957 1 

269 G D 9.51 0.6323 1 

269 G S 8.41 0.6323 1 

272 G V 3.55 0.7165 1 

275 F S 11.68 0.8148 1 

277 S L 10.22 0.3139 1 

279 F I 7.32 0.7992 1 

281 Y C 13.2 0.6599 1 

283 A T 6.33 0.9759 1 

296 F S 12.32 0.4958 1 

300 A T 7.26 0.62 1 

302 A V 7.24 0.1591 1 

305 W S 17.32 0.3242 1 

307 V L 3.71 0.5225 1 

310 V I 3.08 0.6607 1 

313 I K 11.05 0.1534 1 

314 G S 8.41 0.06888 1 

315 Y C 13.2 0.3916 1 

315 Y S 12.42 0.3916 1 

316 G E 10.37 0.05287 1 

320 P A 10.86 0.2219 1 

320 P H 12.32 0.2219 1 

322 T A 8.32 0.2149 1 

322 T M 9 0.2149 1 

325 G R 10.58 0.1235 1 

338 S F 10.14 0.409 1 

339 F S 12.32 0.3956 1 

341 A V 7.42 0.3778 1 

342 L F 6.23 0.6439 1 

343 P S 10.86 0.3279 1 



344 A V 7.4 0.3204 1 

357 Q R 7.09 0.6863 1 

360 R G 11.41 1.042 1 

366 R P 9.15 0.3871 1 

366 R Q 6.16 0.3871 1 

366 R W 10.32 0.3871 1 

371 A T 7.26 0.1523 1 

373 S P 6.06 1.629 1 

379 W R 17.24 0.3489 1 

380 R S 9.75 0.3027 1 

391 T I 9.03 0.261 0 

392 W R 16.87 1.454 1 

393 K M 7.75 2.154 1 

393 K N 3.56 2.154 0 

397 R Q 4.41 2.289 0 

397 R W 8.23 2.289 1 

417 V M -4.46 4.87 0 

448 P R 2.7 4.808 0 

455 H Y 5.53 4.871 1 

520 M R 12.09 0.9933 1 

522 Y S 11.33 0.6934 1 

525 A T 6.71 0.3731 1 

533 R W 9.46 0.4498 0 

539 R W 10.11 0.3226 1 

546 S L 10.26 0.1776 1 

555 R C 12.73 0.2751 1 

555 R H 9.34 0.2751 1 

557 K E 7.53 0.2782 1 

562 R M 10.54 0.3266 1 

583 R H 5.69 4.713 0 

589 G D 8.38 1.456 1 



590 A T 5.2 0.8497 1 

594 R Q 6.31 1.004 1 

611 D Y 4.14 2.709 0 

619 L M 0.83 2.44 1 

643 G S -1.1 1.479 0 

 




